

 Navigation

 	
 index

 	
 next |

 	django-sorter 0.2 documentation

django-sorter

django-sorter helps with sorting objects in Django templates without
modifying your views, can be used multiple times on the same page or
template, provides helpers to easily generate links and forms to switch
the sorting criteria (including the sort order) and has ~100% test coverage.

Quickstart

	Get the app with your favorte Python packaging tool, e.g.:

pip install django-sorter

	List this application in the INSTALLED_APPS setting.
Your settings file might look something like:

INSTALLED_APPS = (
 # ...
 'sorter',
)

	If it’s not already added in your setup, add the request template
context processor to the TEMPLATE_CONTEXT_PROCESSORS setting
(you might need to add it [https://docs.djangoproject.com/en/dev/ref/settings/#template-context-processors]):

TEMPLATE_CONTEXT_PROCESSORS = (
 # ...
 'django.core.context_processors.request',
)

	Specify the allowed sorting criteria, for at least the default
'sort' sorting querystring parameter:

SORTER_ALLOWED_CRITERIA = {
 'sort': ['first_name', 'creation_date', 'title'],
}

	Add this line at the top of your template to load the sorting tags:

{% load sorter_tags %}

	Decide on a variable that you would like to sort, and use the
sort tag on that variable before iterating over it.

{% sort objects as sorted_objects %}

	Optionally, you can display different sort links or forms:

<tr>
 <th>{% sortlink by "first_name" %}By first name{% endsortlink %}</th>
 <th>{% sortlink by "creation_date,-title" %}By creation date and title{% endsortlink %}</th>
 ...
</tr>

The template tag takes a comma separated list of sorting statements.
It also is a block tag and allows you to set the label of the generated
link. The previous snippet will be rendered like this:

<tr>
 <th>By name</th>
 <th>By creation and title</th>
 ...
</tr>

Similarly the {% sortform %} template tag renders a form instead of
a simple link.

Contents:

	Usage
	Sorting

	Links

	Forms

	URLs

	Settings
	SORTER_DEFAULT_QUERY_NAME

	SORTER_ALLOWED_CRITERIA

	Changelog
	v0.2 (2012-05-26)

	v0.1 (2011-09-07)

 Copyright 2011-2012, Jannis Leidel and individual contributors.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-sorter 0.2 documentation

Usage

Sorting

The center piece of the app is the {% sort %} template tag which
takes one required and one optional argument.

The bare bones example is:

{% load sorter_tags %}

{% sort object_qs as sorted_objects %}

{% for obj in sorted_objects %}
 {{ obj.title }}
{% endfor %}

If this template is rendered with a list of objects, say a Django
QuerySet, the template tag will order it by calling the order_by().
The sorting criteria passed to this method is retrieved from the
request’s GET paramaters (the “querystring [http://en.wikipedia.org/wiki/Querystring]”) by looking for a field-value
pair with the name sort.

Simple

So imagine you have a list of blog posts that you want to sort by their
creation dates, in an ascending order. With the example template above
all you’d have to do is to call the view rendering those blog posts with
the appropriate querystring:

http://example.com/blog/?sort=creation_date

Since name of the field is automatically picked up and passed to
order_by() you can also sort in descending order by prepending
the name of the field with a negative sign (-):

http://example.com/blog/?sort=-creation_date

You can also pass multiple fields to the querystring parameter to
sort for multiple fields:

http://example.com/blog/?sort=-creation_date,title

Complex

In some cases you may want to sort multiple lists of objects in the same
template or use advanced techniques like chained sorting workflows.

All you need to do is to pass a second parameter to the {% sort %}
template tag which defines the name of the querystring parameter:

{% load sorter_tags %}

{% sort object_qs with "posts" as sorted_objects %}

{% for obj in sorted_objects %}
 {{ obj.title }}
{% endfor %}

Make sure to use unique names to prevent any clash with other sortings
that may happen on the same page. As a matter of additional precaution
the template tag will prepend it with 'sort_' when analyzing the
request’s querystring.

So if you’d use the example template above, the template tag would look
for a querystring parameter named 'sort_posts' because the second
parameter to the template tag is "posts":

http://example.com/blog/?sort_posts=creation_date

Links

When sorting objects it’s usually required to link to other sorting
criterias. django-sorter includes the {% sortlink %} template tag
for that which takes a number of optional arguments and a required list of
sorting criterias:

{% sortlink [with NAME] [rel REL] [class CLASS] [as VARIABLE] by ORDER_A1[,ORDER_A2,..] [ORDER_B1[,ORDER_B2,..]] .. %}
 LABEL
{% endsortlink %}

As with the {% sort %} template tag, sortlink takes the
name of the querystring parameter it’s supposed to be working with.

For example, the following code would fit the example
shown above:

{% sortlink with "posts" by "title" %}Title{% endsortlink %}

If this snippet would be included in a template that renders your blog
(with a request path of '/blog/'), we’d get:

Title

Multiple criterias

Multiple sorting criterias can be specified in comma separated form:

{% sortlink with "posts" by "creation_data,title" %}
 Creation date and title
{% endsortlink %}

would generate:

Creation date and title

Link text

The template tag is a block tag, which means translating the link text
is as easy as using Django’s trans template tag:

{% load i18n %}

{% sortlink with "posts" by "creation_data,title" %}
 {% trans "Creation date and title" %}
{% endsortlink %}

Other paramters

	rel which sets the appropriate attribute of the link,
e.g. useful when trying to set rel=”nofollow” [http://en.wikipedia.org/wiki/Nofollow].

	class which is useful to style the link correctly.

	as which allows assigning the result of the template tag to
a template context variable.

Further customization

Of course any further customization is also possible by overriding the
templates used by the template tag. By default django-sorter will use
the sorter/sortlink.html template, to render each link.

Furthermore – if a name is given with the with argument – it’ll also
look for the template sorter/sortlink_NAME.html, where NAME is the
value of the argument passed. E.g.:

{% sortlink with "posts" by "title" %}Title{% endsortlink %}

would make the template tag look for a sorter/sortlink_posts.html
and sorter/sortlink.html.

The template tag passes a bunch of variable to the template:

	with - The name of querystring parameter to take into account.

	rel - The value to be used for the HTML rel attribute.

	class - The value to be used for the HTML class attribute.

	by - The list of sorting criterias.

	title - A string which lists all search criteria in prose.

	label - The rendered content of the template block.

	url - The URLObject [https://github.com/zacharyvoase/urlobject] instance with the querystring set appropriately.

	query - The value of the querystring parameter.

Criteria cycling

Sometimes you’ll want to allow switching between criterias depending on
the currently selected sorting criteria. For example, if you sort a
list of blog posts in ascending order you might want to show a link
to the same list but in descending order.

With django-sorter this is as easy as passing a series of sorting
criterias to the same template tag:

{% sortlink with "posts" by "title" "-title" %}Title{% endsortlink %}

Now when the link is rendered it will check the current URL and select
the next sorting criteria to render.

For example, if you’d be on the page with the URL
'/blog/?sort_posts=title', the result would be:

Title

Of course, if the last sorting criteria is found the current request’s
querystring, it’ll start with the first again.

Forms

Other than the sortlink template tag, django-sorter
also ships with a second template tag to apply other sorting criterias –
the sortform tag.

It works basically the same as sortlink and uses the same code behind
the scenes, but looks for a different template: sorter/sortform.html.
Just like the sortlink tag it’ll use the name of the
querystring parameter if given to additionally look for a specific template,
e.g. sorter/sortform_posts.html

An example:

{% sortform with "posts" by "creation_date" %}
 {% trans "Creation and title" %}
{% endsortform %}

rendered:

<form action="" method="get">
 <input type="hidden" name="sort_posts" value="creation_date" />
 <input type="submit" value="Creation date" title="Sort by: 'creation_date' (asc)" />
</form>

URLs

As a quick helper in case you don’t like django-sorter to generate
the links or forms for your sorting efforts, you can also use the simple
sorturl template tag:

{% sorturl with "posts" by "creation_date" %}

would only return the URL to the sorting:

/blog/?sort_posts=creation_date

Don’t forget that it also takes an optional as parameter (like the rest
of the parameters described for the sort template tag). That’s
great for storing the URL to further mangle it or use it for other template-y
things, e.g.:

{% sorturl with "posts" by "creation_date" as sort_by_date_url %}

{% blocktrans with sort_by_date_url as url %}
Please visit the following URL to sort by date:

 http://example.com{{ sort_by_date_url }}

Thanks!
{% endblocktrans %}

 Copyright 2011-2012, Jannis Leidel and individual contributors.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	django-sorter 0.2 documentation

Settings

SORTER_DEFAULT_QUERY_NAME

Default: 'sort'

The name of the querystring used by default when looking
at the current request path or generating links and or forms.

SORTER_ALLOWED_CRITERIA

Default: {}

A mapping of query names to order field names that are checked before
ordering is applied.

The given names support Unix shell-style wildcards and define those
that are allowed, e.g. 'author__*'.

Warning

If the setting is empty, no fields will be allowed which renders
the template tags useless. Hence, it’s an configuration error to
not define this setting.

An example, which would apply to sort links like '/path/?sort=created'
and '/path/?sort_posts=modified,author__username'.

SORTER_ALLOWED_CRITERIA = {
 'sort': ['created', 'title'],
 'sort_posts': ['modified', 'author__*'],
}

 Copyright 2011-2012, Jannis Leidel and individual contributors.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	django-sorter 0.2 documentation

Changelog

v0.2 (2012-05-26)

	Made sure the ordering isn’t reset when no querystring parameter is passed.

	Moved to Travis for testing: http://travis-ci.org/jezdez/django-sorter

	Updated dependency of URLObject to > 2.0.1. This could backwards
incomaptible if you’re using a previous version (< 2.0).

	Dropped support for Python 2.5.

v0.1 (2011-09-07)

	Initial release, yay!

 Copyright 2011-2012, Jannis Leidel and individual contributors.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	django-sorter 0.2 documentation

Index

 Copyright 2011-2012, Jannis Leidel and individual contributors.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 	latest

 _static/plus.png

_static/down.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		django-sorter 0.2 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011-2012, Jannis Leidel and individual contributors.
 Created using Sphinx 1.1.3.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

